Assertions
Why Would You Use Assertions APIs?
The Assertions APIs allow you to create, schedule, run, and delete Assertions with Acryl Cloud.
Supported Assertion Types include:
Goal Of This Guide
This guide will show you how to create, schedule, run and delete Assertions for a Table.
Prerequisites
The actor making API calls must have the Edit Assertions
and Edit Monitors
privileges for the Tables at hand.
Create Assertions
You can create new dataset Assertions to DataHub using the following APIs.
- GraphQL
Freshness Assertion
To create a new freshness assertion, use the upsertDatasetFreshnessAssertionMonitor
GraphQL Mutation.
mutation upsertDatasetFreshnessAssertionMonitor {
upsertDatasetFreshnessAssertionMonitor(
input: {
entityUrn: "<urn of entity being monitored>",
schedule: {
type: FIXED_INTERVAL,
fixedInterval: { unit: HOUR, multiple: 8 }
}
evaluationSchedule: {
timezone: "America/Los_Angeles",
cron: "0 */8 * * *"
}
evaluationParameters: {
sourceType: INFORMATION_SCHEMA
}
mode: ACTIVE
}
) {
urn
}
}
For more details, see the Freshness Assertions guide.
Volume Assertions
To create a new volume assertion, use the upsertDatasetVolumeAssertionMonitor
GraphQL Mutation.
mutation upsertDatasetVolumeAssertionMonitor {
upsertDatasetVolumeAssertionMonitor(
input: {
entityUrn: "<urn of entity being monitored>"
type: ROW_COUNT_TOTAL
rowCountTotal: {
operator: BETWEEN
parameters: {
minValue: {
value: "10"
type: NUMBER
}
maxValue: {
value: "20"
type: NUMBER
}
}
}
evaluationSchedule: {
timezone: "America/Los_Angeles"
cron: "0 */8 * * *"
}
evaluationParameters: {
sourceType: INFORMATION_SCHEMA
}
mode: ACTIVE
}
) {
urn
}
}
For more details, see the Volume Assertions guide.
Column Assertions
To create a new column assertion, use the upsertDatasetFieldAssertionMonitor
GraphQL Mutation.
mutation upsertDatasetFieldAssertionMonitor {
upsertDatasetFieldAssertionMonitor(
input: {
entityUrn: "<urn of entity being monitored>"
type: FIELD_VALUES,
fieldValuesAssertion: {
field: {
path: "<name of the column to be monitored>",
type: "NUMBER",
nativeType: "NUMBER(38,0)"
},
operator: GREATER_THAN,
parameters: {
value: {
type: NUMBER,
value: "10"
}
},
failThreshold: {
type: COUNT,
value: 0
},
excludeNulls: true
}
evaluationSchedule: {
timezone: "America/Los_Angeles"
cron: "0 */8 * * *"
}
evaluationParameters: {
sourceType: ALL_ROWS_QUERY
}
mode: ACTIVE
}
){
urn
}
}
For more details, see the Column Assertions guide.
Custom SQL Assertions
To create a new column assertion, use the upsertDatasetSqlAssertionMonitor
GraphQL Mutation.
mutation upsertDatasetSqlAssertionMonitor {
upsertDatasetSqlAssertionMonitor(
assertionUrn: "<urn of assertion created in earlier query>"
input: {
entityUrn: "<urn of entity being monitored>"
type: METRIC,
description: "<description of the custom assertion>",
statement: "<SQL query to be evaluated>",
operator: GREATER_THAN_OR_EQUAL_TO,
parameters: {
value: {
value: "100",
type: NUMBER
}
}
evaluationSchedule: {
timezone: "America/Los_Angeles"
cron: "0 */6 * * *"
}
mode: ACTIVE
}
) {
urn
}
}
For more details, see the Custom SQL Assertions guide.
Schema Assertions
To create a new schema assertion, use the upsertDatasetSchemaAssertionMonitor
GraphQL Mutation.
mutation upsertDatasetSchemaAssertionMonitor {
upsertDatasetSchemaAssertionMonitor(
assertionUrn: "urn:li:assertion:existing-assertion-id",
input: {
entityUrn: "<urn of the table to be monitored>",
assertion: {
compatibility: EXACT_MATCH,
fields: [
{
path: "id",
type: STRING
},
{
path: "count",
type: NUMBER
},
{
path: "struct",
type: STRUCT
},
{
path: "struct.nestedBooleanField",
type: BOOLEAN
}
]
},
description: "<description of the schema assertion>",
mode: ACTIVE
}
)
}
For more details, see the Schema Assertions guide.
Get Assertions
You can use the following APIs to
- Fetch existing assertion definitions + run history
- Fetch the assertions associated with a given table + their run history.
- GraphQL
- Python
Get Assertions for a Table
To retrieve all the assertions for a table, you can use the following (super long) GraphQL Query.
query dataset {
dataset(urn: "urn:li:dataset:(urn:li:dataPlatform:snowflake,purchases,PROD)") {
assertions(start: 0, count: 1000) {
start
count
total
assertions {
# Fetch the last run of each associated assertion.
runEvents(status: COMPLETE, limit: 1) {
total
failed
succeeded
runEvents {
timestampMillis
status
result {
type
nativeResults {
key
value
}
}
}
}
info {
type
description
lastUpdated {
time
actor
}
datasetAssertion {
datasetUrn
scope
aggregation
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
fields {
urn
path
}
nativeType
nativeParameters {
key
value
}
logic
}
freshnessAssertion {
type
entityUrn
schedule {
type
cron {
cron
timezone
}
fixedInterval {
unit
multiple
}
}
filter {
type
sql
}
}
sqlAssertion {
type
entityUrn
statement
changeType
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
fieldAssertion {
type
entityUrn
filter {
type
sql
}
fieldValuesAssertion {
field {
path
type
nativeType
}
transform {
type
}
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
failThreshold {
type
value
}
excludeNulls
}
fieldMetricAssertion {
field {
path
type
nativeType
}
metric
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
}
volumeAssertion {
type
entityUrn
filter {
type
sql
}
rowCountTotal {
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
rowCountChange {
type
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
}
schemaAssertion {
entityUrn
compatibility
fields {
path
type
nativeType
}
schema {
fields {
fieldPath
type
nativeDataType
}
}
}
source {
type
created {
time
actor
}
}
}
}
}
}
}
Get a single assertion
You can use the following GraphQL query to fetch a single assertion by its URN.
query getAssertion {
assertion(urn: "urn:li:assertion:assertion-id") {
# Fetch the last 10 runs for the assertion.
runEvents(status: COMPLETE, limit: 10) {
total
failed
succeeded
runEvents {
timestampMillis
status
result {
type
nativeResults {
key
value
}
}
}
}
info {
type
description
lastUpdated {
time
actor
}
datasetAssertion {
datasetUrn
scope
aggregation
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
fields {
urn
path
}
nativeType
nativeParameters {
key
value
}
logic
}
freshnessAssertion {
type
entityUrn
schedule {
type
cron {
cron
timezone
}
fixedInterval {
unit
multiple
}
}
filter {
type
sql
}
}
sqlAssertion {
type
entityUrn
statement
changeType
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
fieldAssertion {
type
entityUrn
filter {
type
sql
}
fieldValuesAssertion {
field {
path
type
nativeType
}
transform {
type
}
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
failThreshold {
type
value
}
excludeNulls
}
fieldMetricAssertion {
field {
path
type
nativeType
}
metric
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
}
volumeAssertion {
type
entityUrn
filter {
type
sql
}
rowCountTotal {
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
rowCountChange {
type
operator
parameters {
value {
value
type
}
minValue {
value
type
}
maxValue {
value
type
}
}
}
}
schemaAssertion {
entityUrn
compatibility
fields {
path
type
nativeType
}
schema {
fields {
fieldPath
type
nativeDataType
}
}
}
source {
type
created {
time
actor
}
}
}
}
}
Python support coming soon!
Run Assertions
You can use the following APIs to trigger the assertions you've created to run on-demand. This is particularly useful for running assertions on a custom schedule, for example from your production data pipelines.
- GraphQL
- Python
Run an assertion
mutation runAssertion {
runAssertion(urn: "urn:li:assertion:your-assertion-id", saveResult: true) {
type
nativeResults {
key
value
}
}
}
Where type will contain the Result of the assertion run, either SUCCESS
, FAILURE
, or ERROR
.
The saveResult
argument determines whether the result of the assertion will be saved to DataHub's backend,
and available to view through the DataHub UI. If this is set to false, the result will NOT be stored in DataHub's
backend. The value defaults to true
.
If the assertion is external (not natively executed by Acryl), this API will return an error.
If running the assertion is successful, the result will be returned as follows:
{
"data": {
"runAssertion": {
"type": "SUCCESS",
"nativeResults": [
{
"key": "Value",
"value": "1382"
}
]
}
},
"extensions": {}
}
Run multiple assertions
mutation runAssertions {
runAssertions(urns: ["urn:li:assertion:your-assertion-id-1", "urn:li:assertion:your-assertion-id-2"], saveResults: true) {
passingCount
failingCount
errorCount
results {
urn
type
nativeResults {
key
value
}
}
}
}
Where type will contain the Result of the assertion run, either SUCCESS
, FAILURE
, or ERROR
.
The saveResults
argument determines whether the result of the assertion will be saved to DataHub's backend,
and available to view through the DataHub UI. If this is set to false, the result will NOT be stored in DataHub's
backend. The value defaults to true
.
If any of the assertion are external (not natively executed by Acryl), they will simply be omitted from the result set.
If running the assertions is successful, the results will be returned as follows:
{
"data": {
"runAssertions": {
"passingCount": 2,
"failingCount": 0,
"errorCount": 0,
"results": [
{
"urn": "urn:li:assertion:your-assertion-id-1",
"type": "SUCCESS",
"nativeResults": [
{
"key": "Value",
"value": "1382"
}
]
},
{
"urn": "urn:li:assertion:your-assertion-id-2",
"type": "FAILURE",
"nativeResults": [
{
"key": "Value",
"value": "12323"
}
]
}
]
}
},
"extensions": {}
}
Where you should see one result object for each assertion.
Run all assertions for table
You can also run all assertions for a specific data asset using the runAssetAssertions
mutation.
mutation runAssertionsForAsset {
runAssertionsForAsset(urn: "urn:li:dataset:(urn:li:dataPlatform:snowflake,purchase_events,PROD)", saveResults: true) {
passingCount
failingCount
errorCount
results {
urn
type
nativeResults {
key
value
}
}
}
}
Where type
will contain the Result of the assertion run, either SUCCESS
, FAILURE
, or ERROR
.
The saveResults
argument determines whether the result of the assertion will be saved to DataHub's backend,
and available to view through the DataHub UI. If this is set to false, the result will NOT be stored in DataHub's
backend. The value defaults to true
.
If any of the assertion are external (not natively executed by Acryl), they will simply be omitted from the result set.
If running the assertions is successful, the results will be returned as follows:
{
"data": {
"runAssertionsForAsset": {
"passingCount": 2,
"failingCount": 0,
"errorCount": 0,
"results": [
{
"urn": "urn:li:assertion:your-assertion-id-1",
"type": "SUCCESS",
"nativeResults": [
{
"key": "Value",
"value": "1382"
}
]
},
{
"urn": "urn:li:assertion:your-assertion-id-2",
"type": "FAILURE",
"nativeResults": [
{
"key": "Value",
"value": "12323"
}
]
}
]
}
},
"extensions": {}
}
Where you should see one result object for each assertion.
Run assertion
# Inlined from /metadata-ingestion/examples/library/run_assertion.py
import logging
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
log = logging.getLogger(__name__)
graph = DataHubGraph(
config=DatahubClientConfig(
server="http://localhost:8080",
)
)
assertion_urn = "urn:li:assertion:6e3f9e09-1483-40f9-b9cd-30e5f182694a"
# Run the assertion
assertion_result = graph.run_assertion(urn=assertion_urn, saveResult=True)
log.info(f"Assertion result (SUCCESS / FAILURE / ERROR): {assertion_result.get("type")}")
Run multiple assertions
# Inlined from /metadata-ingestion/examples/library/run_assertions.py
import logging
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
log = logging.getLogger(__name__)
graph = DataHubGraph(
config=DatahubClientConfig(
server="http://localhost:8080",
)
)
assertion_urns = [
"urn:li:assertion:6e3f9e09-1483-40f9-b9cd-30e5f182694a",
"urn:li:assertion:9e3f9e09-1483-40f9-b9cd-30e5f182694g",
]
# Run the assertions
assertion_results = graph.run_assertions(urns=assertion_urns, saveResults=True).get("results")
assertion_result_1 = assertion_results.get("urn:li:assertion:6e3f9e09-1483-40f9-b9cd-30e5f182694a")
assertion_result_2 = assertion_results.get("urn:li:assertion:9e3f9e09-1483-40f9-b9cd-30e5f182694g")
log.info(f"Assertion results: {assertion_results}")
log.info(f"Assertion result 1 (SUCCESS / FAILURE / ERROR): {assertion_result_1.get('type')}")
log.info(f"Assertion result 2 (SUCCESS / FAILURE / ERROR): {assertion_result_2.get('type')}")
Run all assertions for table
# Inlined from /metadata-ingestion/examples/library/run_assertions_for_asset.py
import logging
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
log = logging.getLogger(__name__)
graph = DataHubGraph(
config=DatahubClientConfig(
server="http://localhost:8080",
)
)
assertion_urns = [
"urn:li:assertion:6e3f9e09-1483-40f9-b9cd-30e5f182694a",
"urn:li:assertion:9e3f9e09-1483-40f9-b9cd-30e5f182694g",
]
# Run the assertions
assertion_results = graph.run_assertions(urns=assertion_urns, saveResults=True).get("results")
assertion_result_1 = assertion_results.get("urn:li:assertion:6e3f9e09-1483-40f9-b9cd-30e5f182694a")
assertion_result_2 = assertion_results.get("urn:li:assertion:9e3f9e09-1483-40f9-b9cd-30e5f182694g")
log.info(f"Assertion results: {assertion_results}")
log.info(f"Assertion result 1 (SUCCESS / FAILURE / ERROR): {assertion_result_1.get('type')}")
log.info(f"Assertion result 2 (SUCCESS / FAILURE / ERROR): {assertion_result_2.get('type')}")
Delete Assertions
You can use delete dataset operations to DataHub using the following APIs.
- GraphQL
- Python
mutation deleteAssertion {
deleteAssertion(urn: "urn:li:assertion:test")
}
If you see the following response, the operation was successful:
{
"data": {
"deleteAssertion": true
},
"extensions": {}
}
# Inlined from /metadata-ingestion/examples/library/delete_assertion.py
import logging
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
log = logging.getLogger(__name__)
graph = DataHubGraph(
config=DatahubClientConfig(
server="http://localhost:8080",
)
)
assertion_urn = "urn:li:assertion:my-assertion"
# Delete the Assertion
graph.delete_entity(urn=assertion_urn, hard=True)
log.info(f"Deleted assertion {assertion_urn}")